Arbuscular mycorrhizal fungal community composition affected by original elevation rather than translocation along an altitudinal gradient on the Qinghai-Tibet Plateau

نویسندگان

  • Wei Yang
  • Yong Zheng
  • Cheng Gao
  • Ji-Chuang Duan
  • Shi-Ping Wang
  • Liang-Dong Guo
چکیده

Elucidating arbuscular mycorrhizal (AM) fungal responses to elevation changes is critical to improve understanding of microbial function in ecosystems under global asymmetrical climate change scenarios. Here we examined AM fungal community in a two-year reciprocal translocation of vegetation-intact soil blocks along an altitudinal gradient (3,200 m to 3,800 m) in an alpine meadow on the Qinghai-Tibet Plateau. AM fungal spore density was significantly higher at lower elevation than at higher elevation regardless of translocation, except that this parameter was significantly increased by upward translocation from original 3,200 m to 3,400 m and 3,600 m. Seventy-three operational taxonomic units (OTUs) of AM fungi were recovered using 454-pyrosequencing of 18S rDNA sequences at a 97% sequence similarity. Original elevation, downward translocation and upward translocation did not significantly affect AM fungal OTU richness. However, with increasing altitude the OTU richness of Acaulosporaceae and Ambisporaceae increased, but the OTU richness of Gigasporaceae and Glomeraceae decreased generally. The AM fungal community composition was significantly structured by original elevation but not by downward translocation and upward translocation. Our findings highlight that compared with the short-term reciprocal translocation, original elevation is a stronger determinant in shaping AM fungal community in the Qinghai-Tibet alpine meadow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Arbuscular Mycorrhizal Fungal Community Response to Warming and Grazing Differs between Soil and Roots on the Qinghai-Tibetan Plateau

Arbuscular mycorrhizal (AM) fungi form symbiotic associations with most plant species in terrestrial ecosystems, and are affected by environmental variations. To reveal the impact of disturbance on an AM fungal community under future global warming, we examined the abundance and community composition of AM fungi in both soil and mixed roots in an alpine meadow on the Qinghai-Tibetan Plateau, Ch...

متن کامل

Rapid response of arbuscular mycorrhizal fungal communities to short-term fertilization in an alpine grassland on the Qinghai-Tibet Plateau

BACKGROUND The Qinghai-Tibet Plateau (QTP) is home to the vast grassland in China. The QTP grassland ecosystem has been seriously degraded by human land use practices and climate change. Fertilization is used in this region to increase vegetation yields for grazers. The impact of long-term fertilization on plant and microbial communities has been studied extensively. However, the influence of s...

متن کامل

Caspian Coastal Forests: Arbuscular Mycorrhizal Fungi and Understory Vegetation

Moist and temperate Caspian forests are associated with a diversity of soil types and topography.  Although, natural history and ecological attributes of the Caspian vegetation is well-documented, little is known about mycorrhizae of the Caspian (Hyrcanian) flora. Samples of herbaceous plant species were collected from 4 pre-determined altitudes (-13 upto about 1500m above sea level, appro...

متن کامل

Terrestrial vertebrates promote arbuscular mycorrhizal fungal diversity and inoculum potential in a rain forest soil

Catherine A. Gehring,* Julie E. Wolf and Tad C. Theimer Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 860115640, USA Research School of Biological Sciences, Australian National University, Canberra, ACT 0200, Australia *Correspondence: E-mail: catherine.gehring@ nau.edu Abstract We examined whether terrestrial vertebrates affected the arbuscular mycorrhizal funga...

متن کامل

Responses of Soil Microbial Communities to Experimental Warming in Alpine Grasslands on the Qinghai-Tibet Plateau

Global surface temperature is predicted to increase by at least 1.5°C by the end of this century. However, the response of soil microbial communities to global warming is still poorly understood, especially in high-elevation grasslands. We therefore conducted an experiment on three types of alpine grasslands on the Qinghai-Tibet Plateau to study the effect of experimental warming on abundance a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016